[用JS來寫演算法和了解資料結構] Day1 演算法的好壞評量標準 Big O

[用JS來寫演算法和了解資料結構] Day1 演算法的好壞評量標準 Big O

前言

這個系列主要是想自我挑戰30天用學資料結構和演算法。因為不是資訊本科生,對資料結構的理論一知半解,藉由筆記更加深印象。會搭配一個我很喜歡的前端工程師Hannah分享的鐵人賽文章,來做練習。這邊因為是我個人練習學習,順序或時間可能會跟Hannah的文章不一樣。

會使用或參考到的資源:

演算法的好壞評量標準

兩個評量演算法好壞的指標:

  1. 時間複雜度 (Time complexity)
  2. 空間複雜度 佔用記憶體空間 (Space complexity)
  3. 易讀性 (Readable)

時間複雜度 Time complexity

用來評斷演算法執行的快慢,一般用大 O 符號(Big O notation、BigO)來表示,用來描述一個演算法在輸入 n 個東西時,總執行時間與 n 的關係。

舉個例子,來到書店想買一本書XXX,但架子上有大概100本書,兩種找法:

  1. 一本一本找,若1本花費1分鐘,10本花費10分鐘,100本花費100分鐘,n本花費n分鐘,時間複雜度是Big O(n)
  2. 直接用電腦根據索引找到書的位置,不管幾本都只花費了1分鐘,時間複雜度是Big O(1)

Big O


圖片來源

時間複雜度 從好到不好

  1. Constant Time — O(1) - 陣列讀取 (no loops)
  2. Logarithmic Time — O(log n) - Binary Search 二分搜索
  3. Linear Time — O(n) - 簡易搜索 (for loops, while loops through n items)
  4. Linearithmic Time — O(n log n) - 合併排序、快速排序 (usually sorting operations)
  5. Quadratic Time — O(n^2) (O n squared / power of 2) - 選擇排序、氣泡排序 (every element in a collection needs to be compared to ever other element. Two
    nested loops)
  6. Exponential Time — O(2^n) - 費波那契數列 (recursive algorithms that solves a problem of size N)
  7. Factorial - O(n!) - (you are adding a loop for every element)

Iterating through half a collection is still O(n)
Two separate collections: O(a * b)

1個步驟 Big O(1)

1
2
x = 10

11個步驟(宣吿1次+回圈10次) Big O(n)

1
2
3
x = 10
for i from 1 to x:
print("你好!")

21個步驟(宣吿1次+回圈10次*2次) Big O(n^2)

1
2
3
4
5
6
x = 10
for i from 1 to x:
print("你好!")

for i from 1 to x:
print("Hi")

Big O(log n)
假設 n 為 81 個,那麼只要 9 個步驟完成,則是Big O(log n),例子是二分搜索binary search。

時間限制 Time limit

  • n <= 1 000 000, the expected time complexity is O(n) or O(n log n)
  • n <= 10 000, the expected time complexity is O(n^2)
  • n <= 500, the expected time complexity is O(n^3)

重點

  • 大 O 符號:用來描述演算法在輸入 n 個東西時,所需時間與 n 的關係
  • 演算法的速度不是以時間計算,而是以步驟次數

What Can Cause Time in a Function?

  • Operations (+, -, *, /)
  • Comparisons (<, >, ==)
  • Looping (for, while)
  • Outside Function call (function())

Rule Book

Rule 1: Always Worst Case
Rule 2: Remove Constants
Rule 3:

• Different inputs should have different variables: O(a + b)
• A and B arrays nested would be: O(a * b)

  • + for steps in order
  • * for nested steps
Rule 4: Drop Non-dominant terms
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function printAllNumbersThenAllPairSums(numbers) {
console.log("these are the numbers:");
numbers.forEach(function(number) {
console.log(number);
});

console.log("and these are their sums:");
numbers.forEach(function(firstNumber) {
numbers.forEach(function(secondNumber) {
console.log(firstNumber + secondNumber);
});
});
}

printAllNumbersThenAllPairSums([1, 2, 3, 4, 5]); // O(n^2)

空間複雜度 Space complexity

What Causes Space Complexity?

  • Variables
  • Data Structures
  • Function Call
  • Allocations

學習與參考資料

[用JS來寫演算法和了解資料結構] Day1 演算法的好壞評量標準 Big O

https://kaiyuncheng.github.io/2023/09/25/leetcodeDay1/

Author

KaiYun Cheng

Posted on

2023-09-25

Updated on

2024-04-13

Licensed under

Comments

Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×