/* Given an array A of non-negative integers, //正整數的陣列 return an array consisting of all the even elements of A, followed by all the odd elements of A. // 回傳陣列,前面是偶數後面是奇數。 You may return any answer array that satisfies this condition. Example 1: Input: [3,1,2,4] Output: [2,4,3,1] The outputs [4,2,3,1], [2,4,1,3], and [4,2,1,3] would also be accepted. Note: 1 <= A.length <= 5000 0 <= A[i] <= 5000 */
/** * @param {number[]} A * @return {number[]} */ var sortArrayByParity = function (A) {};
這題我的想法是把偶、奇數分別丟到兩個陣列,最後再合併。
1 2 3 4 5 6 7 8 9 10 11 12 13 14
var sortArrayByParity = function (A) { let evenAry = []; let oddAry = []; A.forEach(n => { if (n % 2 === 0) { evenAry.push(n); } else { oddAry.push(n); } }); return [...evenAry, ...oddAry]; };
sortArrayByParity([3, 1, 2, 4]);
一行 code.. 但跑兩次 filter 應該是 n^2
1 2 3 4 5
var sortArrayByParity = function (A) { return A.filter(n => n % 2 == 0).concat(A.filter(n => n % 2 == 1)); };
sortArrayByParity([3, 1, 2, 4]);
偶數從前面插入 unshift ,奇數才後面 push
1 2 3 4 5 6 7 8 9
var sortArrayByParity = function (A) { let ary = []; A.forEach(item => { item % 2 == 0 ? ary.unshift(item) : ary.push(item); }); return ary; };
sortArrayByParity([3, 1, 2, 4]);
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
var sortArrayByParity = function(nums) { if (nums.length === 1) return nums; let left = 0; let right = nums.length - 1; while (left < right) { if (nums[left] % 2 === 1 && nums[right] % 2 === 0) { [nums[left], nums[right]] = [nums[right], nums[left]]; } if (nums[left] % 2 === 0) left++; if (nums[right] % 2 === 1) right--; } return nums; }; sortArrayByParity([3, 1, 2, 4]);
/* Given an integer array nums of 2n integers, group these integers into n pairs (a1, b1), (a2, b2), ..., (an, bn) such that the sum of min(ai, bi) for all i is maximized. Return the maximized sum. // 給一個 有2倍數量 值的陣列nums // 比較兩兩成對後的最小值的加總,再比較各種可能中的找出最大值 // 回傳找出的最大值 Example 1: Input: nums = [1,4,3,2] Output: 4 Explanation: All possible pairings (ignoring the ordering of elements) are: 1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3 2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3 3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4 So the maximum possible sum is 4. Example 2: Input: nums = [6,2,6,5,1,2] Output: 9 Explanation: The optimal pairing is (2, 1), (2, 5), (6, 6). min(2, 1) + min(2, 5) + min(6, 6) = 1 + 2 + 6 = 9. Constraints: 1 <= n <= 104 nums.length == 2 * n -104 <= nums[i] <= 104 // 有可能有負值 /** * @param {number[]} nums * @return {number} */ var arrayPairSum = function (nums) {};
小排到大後,一對中的較小值 (因為已經排序好了所以就是一對中的第一個) 的 加總
1 2 3 4 5 6 7 8 9 10 11
var arrayPairSum = function (nums) { let len = nums.length; let sum = 0; nums = nums.sort((a, b) => a - b); for (let i = 0; i < len; i += 2) { sum += nums[i]; } return sum; };