[用JS來寫演算法和了解資料結構] Day12 Algorithm - Recursion 遞迴 - Factorial / Fibonacci numbers
Recursion 遞迴
- 在函式之中呼叫函式自己本身
- Identify the base case
- Identify the recursive case
- Get closer and return when needed. Usually 2 returns.
1 | let counter = 0; |
Factorial 階層
- 5! = 5 * 4 * 3 * 2 * 1
可分解成
- 5! = 5 * 4!
- 5! = 5 * 4 * 3!
- 5! = 5 * 4 * 3 * 2!
- 5! = 5 * 4 * 3 * 2 * 1
1 | // Write two functions that finds the factorial of any number. |
Fibonacci numbers 費波那契數列
1 | // Given a number N return the index value of the Fibonacci sequence, |
Reverse String - use Recursion
1 | function reverseStringRecursive(str) { |
為何要用 O(2^n) 的 Recursion?
Pro:
- make code dry
- Readability
Con: - Large Stack
使用時機
- Every time you are using a tree or converting something into a tree, consider Recursion.
- Divided into a number of sub problems that are smaller instances of the same problem. 能夠拆分成更小但類似的問題
- Each instance of the sub problem is identical in nature. 計算方式雷同
- The solution of each sub problem can be combined to solve the problem at hand. 拆分的結果能夠組合
- Divide and Conquer (分而治之) using Recursion
學習與參考資料
[用JS來寫演算法和了解資料結構] Day12 Algorithm - Recursion 遞迴 - Factorial / Fibonacci numbers