[用JS來寫演算法和了解資料結構] Day10 Algorithm - Searching / Traversal
Searching / Traversal
Search
簡易搜尋/線性搜索 Sequential Search/Linear Search - O(n)
二分搜尋 Binary Search - O(log n)
Traversal
Depth First Search (DFS) 先 上到下 再 左到右 - O(n)
Breadth First Search (BFS) 先 左到右 再 上到下 - O(n)
- DFS use lower memories than BFS
簡易搜尋/線性搜索 Sequential Search/Linear Search
Time - O(n)
1個耗費的步驟1次O(1) ,n個耗費的步驟就是n次O(n),
- 把array中所有的數值都列出來
- 從一個沒有順序的array中找出某個元素,不知道index的情況下
1 | function findNum(ary, target){ |
以下 array內建的搜尋法都是 Linear Search looping 一遍 O(n)
1 | const beasts = ["Centaur", "Godzilla", "Minotaur", "Hydra"]; |
- 在一個沒有順序的array中找出最大或最小值
1 | function findMax(ary) { |
找第二大
1 | function findSecondMax(ary) { |
二分搜尋 Binary Search
Time - O(log n)
1個耗費的步驟1次O(1),4個耗費的步驟為2次,n個耗費的步驟是log n次。
- 需注意使用二分搜尋時,必須是一個排序好陣列(例如:A-Z,1-100,小到大,大到小)。
在生活中最熟悉的例子就是終極密碼這個遊戲,小時候可能都有玩過。1-100猜一個數字,一開始大家都會先對半切 猜50,比50大還是比50小,知道比50小後再對半猜25,接下來以此類推。恩沒錯…這個就是二分搜尋的概念。
1 | // input ary = [5,17,33,41,55,61,80] and target = 55 |
Traversal
- Breadth First Search (BFS) 先 左到右 再 上到下 - O(n)
Pro:
Shortest Path
Closer Nodes
Con:
More Memory
- Depth First Search (DFS) 先 上到下 再 左到右 - O(n)
Pro:
Less Memory
Does Path Exit?
Con:
Can Get Slow
Interview question
If you know a solution is not far from the root of the tree:
BFSIf the tree is very deep and solutions are rare:
BFS - DFS will be slowerIf the tree is very wide:
DFS - BFS will need too much memory, in a queueIf solutions are frequent but located deep in the tree:
DFSDetermining whether a path exists between two nodes:
DFSFinding the shortest path:
BFS
學習與參考資料
[用JS來寫演算法和了解資料結構] Day10 Algorithm - Searching / Traversal