[用JS來寫演算法和了解資料結構] Day10 Algorithm - Searching / Traversal

[用JS來寫演算法和了解資料結構] Day10 Algorithm - Searching / Traversal

Searching / Traversal

Search
簡易搜尋/線性搜索 Sequential Search/Linear Search - O(n)
二分搜尋 Binary Search - O(log n)

Traversal
Depth First Search (DFS) 先 上到下 再 左到右 - O(n)
Breadth First Search (BFS) 先 左到右 再 上到下 - O(n)

  • DFS use lower memories than BFS

Time - O(n)

1個耗費的步驟1次O(1) ,n個耗費的步驟就是n次O(n),

  • 把array中所有的數值都列出來
  • 從一個沒有順序的array中找出某個元素,不知道index的情況下
1
2
3
4
5
6
7
8
9
10
function findNum(ary, target){
for(let i = 0; i < ary.length; i++){
if(ary[i] === target){
return true
}
}
return false
}

findNum([1,5,6,7,2], 2);

以下 array內建的搜尋法都是 Linear Search looping 一遍 O(n)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
const beasts = ["Centaur", "Godzilla", "Minotaur", "Hydra"];

beasts.indexOf("Godzilla"); // 回傳 1 找到的index 找不到 -1

beasts.findIndex((item) => {
return item === "Godzilla";
});
// 回傳 1 找到的index 找不到 -1

beasts.find((item) => {
return item === "Godzilla";
});
// 回傳 "Godzilla" 找到的item 找不到 undefined

beasts.includes("Godzilla");
//true or false
  • 在一個沒有順序的array中找出最大或最小值
1
2
3
4
5
6
7
8
9
10
11
function findMax(ary) {
let max;
for (let i = 0; i < ary.length; i++) {
if(max === undefined || max < ary[i]) {
max = ary[i];
}
}
return max;
}

findMax([1,5,6,7,2]);

找第二大

1
2
3
4
5
6
7
8
9
10
11
12
13
14
function findSecondMax(ary) {
let max, second;
for (let i = 0; i < ary.length; i++) {
if(max === undefined || max < ary[i]) {
second = max;
max = ary[i];
}else if(second === undefined || second < ary[i]){
second = ary[i];
}
}
return second;
}

findSecondMax([1,5,6,7,2]); // 6

Time - O(log n)

1個耗費的步驟1次O(1),4個耗費的步驟為2次,n個耗費的步驟是log n次。

  • 需注意使用二分搜尋時,必須是一個排序好陣列(例如:A-Z,1-100,小到大,大到小)。
    在生活中最熟悉的例子就是終極密碼這個遊戲,小時候可能都有玩過。1-100猜一個數字,一開始大家都會先對半切 猜50,比50大還是比50小,知道比50小後再對半猜25,接下來以此類推。恩沒錯…這個就是二分搜尋的概念。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// input ary = [5,17,33,41,55,61,80] and target = 55
// output index 4
function binarySearch(ary, target){
let left = 0;
let right = ary.length - 1;
let mid;

while(left <= right){
mid = Math.floor((left + right) / 2);
if(target === ary[mid]){
return mid;
} else if(target < ary[mid]){
right = mid - 1;
} else{
left = mid + 1;
}
}
return -1;
}

binarySearch([5,17,33,41,55,61,80], 55);

Traversal

  • Breadth First Search (BFS) 先 左到右 再 上到下 - O(n)

Pro:
Shortest Path
Closer Nodes

Con:
More Memory

  • Depth First Search (DFS) 先 上到下 再 左到右 - O(n)

Pro:
Less Memory
Does Path Exit?

Con:
Can Get Slow

Interview question

  • If you know a solution is not far from the root of the tree:
    BFS

  • If the tree is very deep and solutions are rare:
    BFS - DFS will be slower

  • If the tree is very wide:
    DFS - BFS will need too much memory, in a queue

  • If solutions are frequent but located deep in the tree:
    DFS

  • Determining whether a path exists between two nodes:
    DFS

  • Finding the shortest path:
    BFS

學習與參考資料

[用JS來寫演算法和了解資料結構] Day10 Algorithm - Searching / Traversal

https://kaiyuncheng.github.io/2023/10/09/leetcodeDay14/

Author

KaiYun Cheng

Posted on

2023-10-09

Updated on

2024-04-14

Licensed under

Comments

Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×